

TEPMOCTATЫ ЖИДКОСТНЫЕ TEPMOTECT-100, TEPMOTECT-100-40

Руководство по эксплуатации ТКЛШ 2.998.013 РЭ

СОДЕРЖАНИЕ

1 Описание и работа термостатов	3
1.1 Назначение	3
1.2 Технические характеристики	3
1.3 Состав термостатов	5
1.4 Устройство и принцип работы	<i>6</i>
1.5 Маркировка	
1.6 Упаковка	8
2 Использование по назначению	8
2.1 Эксплуатационные ограничения	8
2.2 Подготовка к использованию	ç
2.3 Использование термостатов	10
2.4 Замена теплоносителя	12
3 Техническое обслуживание	13
4 Транспортирование и хранение	13
4.1 Транспортирование	13
4.2 Хранение	13
5 Поверка термостатов	13
6 Прочие сведения	14
6.1 Форма записи при заказе	14
6.2 Сведения о приемке и поверке	14
6.3 Свидетельство об упаковке	14
6.4 Гарантийные обязательства	15
6.5 Сведения о рекламациях	15
7 Сведения о техническом обслуживании	1 <i>6</i>
8 Сведения о поверке	17
ПРИЛОЖЕНИЕ А. Перечень ссылочных нормативных документов	18
ПРИЛОЖЕНИЕ Б. Запрос на техническое обслуживание	19

[!] Перед применением термостата, пожалуйста, прочитайте данное руководство.

Настоящее руководство по эксплуатации распространяется на термостаты жидкостные ТЕРМОТЕСТ-100 и ТЕРМОТЕСТ-100-40 (далее по тексту — термостаты) и содержит сведения, необходимые для изучения и правильной технической эксплуатации термостатов.

К работе с термостатами допускаются лица, изучившие настоящее руководство по эксплуатации, имеющие необходимую профессиональную подготовку и обученные правилам техники безопасности при работе с электроустановками.

Изготовитель оставляет за собой право вносить в конструкцию и схему термостатов изменения, не влияющие на их технические характеристики, без коррекции эксплуатационной документации.

. Лица и организации, использующие термостаты, несут ответственность за разработку соответствующих мер безопасности.

1 ОПИСАНИЕ И РАБОТА ТЕРМОСТАТОВ

1.1 Назначение

- 1.1.1 Термостаты ТЕРМОТЕСТ-100 и ТЕРМОТЕСТ-100-40 предназначены для воспроизведения и поддержания заданной температуры жидкого теплоносителя, циркулирующего во внутренней ванне термостатов, при проведении поверки и калибровки различных термометров и датчиков температуры.
- 1.1.2 Термостаты могут быть использованы в промышленных и научно-исследовательских лабораториях.
- 1.1.3 При эксплуатации в рабочих условиях термостаты устойчивы к воздействию климатических факторов для исполнения УХЛ 4.2 ГОСТ 15150 со следующими уточнениями:
 - температура окружающего воздуха, °С от 10 до 35
- 1.1.4 Термостаты ТЕРМОТЕСТ-100 и ТЕРМОТЕСТ-100-40 являются средствами измерений утвержденного типа.

1.2 Технические характеристики

1.0.1 Лианазон воспроизволимну томпоратур 9C

г. диапазон воспроизводимых температур, эс:	
• TEPMOTECT -100	. от минус 3 0 до 105
• TEPMOTECT -100-40	. от минус 40 до 105
1.2.2 Время нагревания (охлаждения) теплоносителя от температурь	ы окружающего воз-
духа до установленной температуры¹, ч, не более:	
• 105 °C	1.5

•	105 ℃	.1.5
•	минус 30 °C для TEPMOTECT-100	.1.5
•	минус 40 °C для TEPMOTECT-100-40	.2.0

1.2.3 Нестабильность поддержания установленной температуры в течение 30 минут, °С, в пределах......±**0.**01

1.2.4 Неоднородность температурного поля в рабочей ванне (на глубине не менее 10 мм

3

¹ Пункт 1.2.2 является информационным.

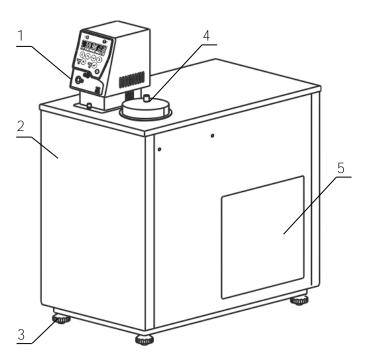
ниям **ТР ТС** 020/2011.

1.0.4 Porovousyon in torrouscutors.
1.2.6 Рекомендуемый теплоноситель: • для диапазона температур от минус 40 °C до 5 °C спирт этиловый ГОСТ 17299
 для диапазона температур от минус 40 °C до 3 °C Спирт этиловый гост 17299 для диапазона температур от минус 40 °C до 105 °CПМС-5 ГОСТ 130321
 для диапазона температур от минус 30 °С до 105 °С
для диапазона температур от минус 30 °C до 95 °C жидкость
охлаждающая ОЖ -40 (ТОСОЛ А -40) ГОСТ 28084
• для диапазона температур от минус 40 °C до 95 °C жидкость
охлаждающая ОЖ- 65 (ТОСОЛ А -65) ГОСТ 28084
1.2.7 Габаритные размеры термостатов, мм, не более
1.2.8 Размеры рабочей ванны, мм, не менее
1.2.9 Масса термостатов без теплоносителя, кг, не более
1.2.10 Рекомендуемое время непрерывной работы в лабораторных условиях, ч
1.2.11 Средний срок службы, лет
1.2.12 Средняя наработка на отказ, ч
1.2.13 Питание термостатов осуществляется от сети переменного тока, соответствующей
требованиям ГОСТ 32144, со следующими уточнениями:
напряжение, Вчастота, Гц50±1
1.2.14 Потребляемая мощность, кВт, не более
1.2.15 По способу защиты от поражения электрическим током термостаты относятся к
классу ГОСТ 12.2.007.0.
1.2.16 По требованиям безопасности низковольтного оборудования термостаты должны удовлетворять требованиям ТР ТС 004/2011.
1.2.17 По электромагнитной совместимости термостаты должны удовлетворять требова-

 $^{^{1}}$ При нагревании теплоносителя ПМС-5 выше 80 $^{\circ}$ С скорость деструкции возрастает.

1.3 Состав термостатов

1.3.1 Комплект поставки термостатов соответствует перечню, указанному в таблице 1.


Таблица 1

	Наименование	Обозначение документа	Количество
1	Ванна термостата:		
	• TEPMOTECT-100	ТКЛШ 4.106.024	1
	• TEPMOTECT -100-40	ТКЛШ 4.106.024-17	
2	Блок регулирования M10M-X*	ТКЛШ 3.222.009-22	1
3	Входная трубка	ТКЛШ 8.236.023	1
4	Выходная трубка	ТКЛШ 8.236.022	1
5	Кабель соединительный	ТКЛШ 4.853.008	1
6	Подставка открытого типа	ТКЛШ 6.150.009	1
7	Подставка закрытого типа	ТКЛШ 6.150.010	1
8	Крышка	ТКЛШ 6.150.010-03	1
9	Розетка электрическая	покупное изделие	1
10	Шланг сливной	покупное изделие	1
11	Руководство по эксплуатации термостата	ТКЛШ 2.998.013 РЭ	1
12	Руководство по эксплуатации М10М**	ТКЛШ 3.222.009-22 РЭ	1
13	Методика поверки с изменением №1	ТКЛШ 0.515.003 МП	1
*	— может комплектоваться блоком регулировани	я М10-Х;	
**	* — входит в комплект поставки блока регулирования M10M-X или M10-X		

- 1.3.2 Для проведения поверки и калибровки дополнительно потребуются:
- держатели ТЕРМОТЕСТ-Д1-3/9, ТЕРМОТЕСТ-Д1-9/16, ТЕРМОТЕСТ-Д1-16/20, предназначенные для установки термометров различного диаметра;
- держатель TEPMOTECT-ДК для установки коротких датчиков с минимальной длиной щупа от 30 мм;
- держатель TEPMOTECT-Д-ExT для установки электронных термометров ExT-01/2 и ExT-01/3;
- электронный термометр LTA-Э для контроля температуры теплоносителя;
- выравнивающий блок TEPMOTECT-Б1 для улучшения кратковременной стабильности температуры при проведении поверки и калибровки электронных термометров ЛТ-300 и ExT-01/1;
- выравнивающий блок TEPMOTECT-Б2 для улучшения кратковременной стабильности температуры при проведении поверки и калибровки электронных термометров LTA;
- штатив ТЕРМОТЕСТ-Ш для размещения термометров в промежутках между операциями поверки и после ее завершения, а также для размещения блока выравнивания температуры TEPMOTECT-Б;
- клеммник TEPMOTECT-К для подключения преобразователей температуры ко входу измерительного прибора;
- специализированный вытяжной шкаф ШВС-Т для удаления образующихся при работе термостата паров теплоносителя, либо подставка ТЕРМОТЕСТ-100-П, предназначенная для размещения термостата на удобной при работе с термометрами высоте, при его установке под вытяжным зонтом.

1.4 Устройство и принцип работы

1.4.1 Внешний вид термостатов TEPMOTECT-100 и TEPMOTECT-100-40 показан на рисунке 1.

- 1 блок регулирования температуры;
- 2 ванна термостата;
- 3 регулируемые ножки;
- 4 крышка рабочей ванны;
- 5 воздушный теплообменник.

Рисунок 1 — Внешний вид термостатов

- 1.4.2 Работа термостата заключается в воспроизведении и поддержании заданной температуры циркулирующего теплоносителя и обеспечении равномерного температурного поля в рабочей ванне.
- 1.4.3 Циркуляция теплоносителя и поддержание заданной температуры посредством нагрева осуществляется блоком регулирования температуры. Механизм поддержания заданной температуры теплоносителя описан в документе ТКЛШ 3.222.009-22 РЭ «Блок регулирования температуры погружной циркуляционный М10М серии МАСТЕР».
- 1.4.4 Охлаждение теплоносителя осуществляется с помощью холодильной машины, установленной в ванне термостата.
- Включение холодильной машины происходит не ранее, чем через 3 минуты после включения термостата. Работа холодильной машины блокируется, если температура теплоносителя превысит 75 °C. Эти меры приняты для увеличения ресурса работы холодильной машины.

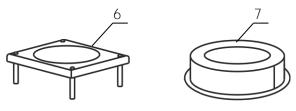


Рисунок 2 — Внешний вид подставок

- 1.4.5 Термостаты комплектуются двумя подставками, показанными на рисунке 2.
- 1.4.6 Подставка открытого типа 6 предназначена для поверки стеклянных термометров полного погружения. При использовании этой подставки поверяемая отметка шкалы термометра находится на уровне перелива теплоносителя и на уровне глаз поверителя.
- 1.4.7 Подставка закрытого типа 7 предназначена для поверки термометров частичного погружения, манометрических термометров и термопреобразователей сопротивления. Использование подставки закрытого типа уменьшает испарение теплоносителя и ограничивает доступ воздуха к его поверхности. Это увеличивает срок службы теплоносителя.

1.4.8 Принцип работы термостата проиллюстрирован на рисунке 3.

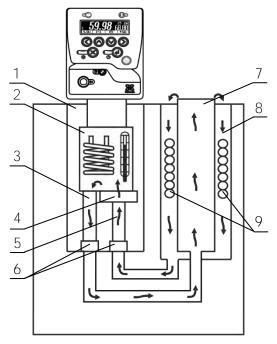


Рисунок 3 — Устройство термостата

- 1 основная ванна термостата;
- 2 резервуар с нагревателем и датчиком температуры;
- 3 выходная трубка;
- 4 циркуляционный насос;
- 5 входная трубка;
- 6 соединительные муфты на дне основной ванны;
- 7 рабочая ванна термостата;
- 8 дополнительная ванна термостата;
- 9 теплообменник холодильной машины.
- 1.4.9 Циркуляционный насос 4 блока регулирования температуры (рисунок 3), через входную трубку 5 забирает теплоноситель из дополнительной ванны 8 и нагнетает его в резервуар 2 с нагревателем и датчиком температуры. В резервуаре температура теплоносителя регулируется и далее, через выходную трубку 3, теплоноситель поступает в рабочую ванну 7, а из нее, переливом через верхний край ванны, поступает в дополнительную ванну 8, где происходит охлаждение теплоносителя при помощи теплообменника холодильной машины 9.
- 1.4.10 Рабочая ванна легко извлекается из дополнительной ванны термостата, что облегчает ее очистку и проведение профилактических работ.

1.5 Маркировка

- 1.5.1 Маркировочная наклейка, расположенная на правой панели ванны термостата, содержит:
 - знак утверждения типа средства измерений;
 - товарный знак предприятия-изготовителя;
 - наименование и обозначение термостата;
 - заводской номер термостата;
 - единый знак обращения продукции на рынке государств членов Таможенного союза;
 - данные о номинальных значениях напряжения, частоты питания и потребляемой мощности;
 - дату изготовления.
- $1.5.2~{\rm Ha}$ транспортную тару нанесены основные и дополнительные информационные надписи, манипуляционные знаки «ВЕРХ», «ХРУПКОЕ. ОСТОРОЖНО», «БЕРЕЧЬ ОТ ВЛАГИ» в соответствии с ГОСТ 14192.

1.6 Упаковка

1.6.1 В ящик, изготовленный по чертежам предприятия, уложены комплектующие в соответствии с перечнем, указанным в таблице 1.

Руководство по эксплуатации, методика поверки и свидетельство поверки помещены в полиэтиленовый пакет.

- 1.6.2 В упаковочном листе указаны следующие сведения:
- наименование и адрес предприятия-изготовителя;
- наименование, обозначение и номер термостата;
- комплектность термостата;
- дата упаковки;
- подпись упаковщика и печать предприятия-изготовителя.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

- 2.1.1 При использовании термостатов следует принимать во внимание следующие эксплуатационные ограничения:
 - термостаты нельзя устанавливать во взрывоопасных помещениях;
 - параметры питающей сети должны соответствовать 1.2.13;
 - температура окружающей среды должна соответствовать 1.1.3;
 - не допускается попадание влаги на внутренние электрические элементы термостатов.
- Подключение термостатов к стабилизатору напряжения или источнику бесперебойного питания может привести к неисправности приборов. Выход из строя термостатов по этой причине не является гарантийным случаем.
 - 2.1.2 Требуется полное отключение от электропитания в следующих случаях:
 - необходимо избегать любой опасности, связанной с использованием термостатов:
 - проводится очистка;
 - идет подготовка к ремонту или техническому обслуживанию специалистами.
- Запрещается переворачивать и длительно (более 15 минут) наклонять термостаты. Эти действия могут привести к неисправности холодильной машины.

8

¹ Полное отключение означает: вилка сетевого кабеля вынута из электрической розетки.

2.2 Подготовка к использованию

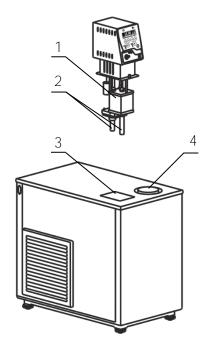
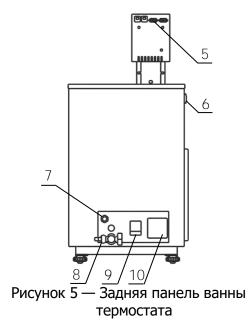



Рисунок 4 — Установка блока регулирования

- 2.2.1 Выбрать место установки термостата вдали от источников тепла и со свободным доступом воздуха для вентиляции блока регулирования и холодильной машины в процессе работы. Расстояние от стенок термостата, имеющих вентиляционные решетки, до другого оборудования или стен помещения должно быть не менее 0.4 м.
- 2.2.2 Установить ванну термостата на горизонтальную поверхность. Добиться горизонтального положения крышки ванны вращением ножек 3 (рисунок 1).
- 2.2.3 Вставить входную и выходную трубки 2 (если они не были установлены предприятием-изготовителем) во входной и выходной патрубки блока регулирования и зафиксировать их винтами (рисунок 4). Выходную трубку следует вставлять в резервуар 1 косым срезом до упора.
- 2.2.4 Установить блок регулирования в отверстие 3, при этом входная и выходная трубки 2 (рисунок 4) должны войти в соединительные муфты 6 (рисунок 3) на дне основной ванны. После установки закрепить блок регулирования на ванне винтовыми фиксаторами.
- Во время установки блока регулирования вилка сетевого кабеля должна быть вынута из электрической розетки.
- 2.2.5 К переливному штуцеру 7 (рисунок 5) присоединить гибкий шланг, второй конец которого опустить в емкость для сбора излишков теплоносителя объемом 1.5—2 литра.
- 2.2.6 Заполнить ванну термостата теплоносителем через отверстие над рабочей ванной 4 (рисунок 4). Перелив теплоносителя из рабочей ванны в дополнительную и основную ванны займет некоторое время. Заполнять ванны следует до момента начала слива теплоносителя из переливного штуцера 7. Температурный диапазон применения теплоносителя должен соответствовать значениям, указанным в 1.2.6.
- При заполнении термостата теплоносителем не допускать попадания брызг на лицевую панель блока регулирования.
- 2.2.7 Вставить вилку сетевого кабеля блока регулирования в розетку 10 (рисунок 5). Соединить кабелем из комплекта поставки блок регулирования (разъем 5) и холодильную машину (разъем 6). Сетевой кабель термостата подключить к питающей сети. Для этого в лабораторном помещении должна быть установлена электрическая розетка из комплекта поставки термостата.
- 2.2.8 Автоматический выключатель 9 (рисунок 5) перевести в положение «включено».

- 2.2.9 При первом запуске термостата необходимо включить блок регулирования в режиме прокачки в соответствии с документом ТКЛШ 3.222.009-22 РЭ «Блок регулирования температуры погружной циркуляционный М10М серии МАСТЕР». При работе циркуляционного насоса уровень теплоносителя в рабочей ванне поднимается и теплоноситель начинает равномерно переливаться в дополнительную ванну. При этом уровень теплоносителя в основной ванне падает, что может привести к срабатыванию защиты от недостаточного уровня теплоносителя. Доливать теплоноситель следует до момента начала слива из переливного штуцера 7 (рисунок 5).
- **!** Если перелив теплоносителя из рабочей ванны в дополнительную не происходит, необходимо выключить термостат.
- 2.2.10 Причина отсутствия перелива неправильная работа насоса, вызванная воздушной пробкой, образовавшейся в резервуаре 1 (рисунок 4). Для ее устранения необходимо:
 - выключить термостат;
 - вынуть из ванны и погрузить обратно блок регулирования температуры для вытеснения воздушной пробки из резервуара 1;
 - включить термостат и убедиться в том, что теплоноситель равномерно переливается из рабочей ванны в дополнительную.
- 2.2.11 Управление режимами регулирования температуры теплоносителя описано в документе ТКЛШ 3.222.009-22 РЭ «Блок регулирования температуры погружной циркуляционный М10М серии МАСТЕР».

2.3 Использование термостатов

- При работе с термостатами следует проявлять осторожность во избежание получения ожогов при контакте с горячими поверхностями и теплоносителем.
- 2.3.1 Для обеспечения заявленных метрологических характеристик в рабочей ванне термостатов необходимо установить значения параметров ПИД-регулирования в зависимости от используемого теплоносителя. Для этого отключить адаптивный режим ПИД-регулятора «Авто:Выкл» (см. документ ТКЛШ 3.222.009-22 РЭ «Блок регулирования температуры погружной циркуляционный М10М серии МАСТЕР») и установить значения параметров ПИД-регулирования в соответствии с таблицей 2.

Таблица 2

Теплоноситель	Коэффициент пропорциональности Кр	Постоянная времени интегрирования Ті	Постоянная времени дифференцирования Td
Спирт этиловый ГОСТ 17299	100.0	20.0	2.0
ОЖ-40 (ТОСОЛ A -40) ГОСТ 28084	100.0	20.0	2.0
ОЖ-65 (ТОСОЛ А -65) ГОСТ 28084	100.0	20.0	2.0
ПМС-10 ГОСТ 13032	60.0	40.0	2.0
ПМС -5 ГОСТ 13032	60.0	40.0	2.0

2.3.2 При работе термостатов на температурах, близких к нижней границе диапазона воспроизводимых температур, необходимо доливать теплоноситель до момента слива из переливного штуцера 7 (рисунок 5) при его охлаждении на каждые 10 °C.

- 2.3.3 Стабильность поддержания воспроизводимой температуры зависит от вязкости теплоносителя. Для нормальной работы термостатов вязкость теплоносителя при температуре регулирования не должна превышать 40 мм²/с.
- 2.3.4 Вязкость ПМС при длительной работе термостатов на температурах, близких к верхней границе диапазона воспроизводимых температур, постепенно увеличивается. Для продления срока службы теплоносителя необходимо:
 - использовать крышку 4 (рисунок 1), ограничивающую доступ воздуха к поверхности теплоносителя при выходе на установленную температуру и в промежутках между операциями поверки;
 - не реже одного раза в месяц контролировать вязкость ПМС и, при увеличении ее значения при 20 °С в два раза относительно исходной, необходимо полностью заменить теплоноситель.
- При нагревании теплоносителя ПМС выше 80 °С его вязкость постепенно увеличивается и может превысить значение 40 мм²/с при температурах, близких к нижней границе диапазона воспроизводимых температур. Это приводит к увеличению нестабильности поддержания установленной температуры и к неисправности прибора.
- 2.3.5 Вязкость ПМС также увеличивается при работе термостатов на температурах, близких к нижней границе диапазона воспроизводимых температур. Конденсация влаги из воздуха, которая, оседая на испарителе, снижает его эффективность. Для продления срока службы теплоносителя необходимо:
 - использовать крышку 4 (рисунок 1), ограничивающую доступ воздуха к поверхности теплоносителя при выходе на установленную температуру и в промежутках между операциями поверки;
 - теплоноситель ПМС периодически нагревать до температуры 105 °C и выдерживать не менее 30 минут.
- 2.3.6 Вязкость этилового спирта постепенно увеличивается при работе термостатов на температурах, близких к нижней границе диапазона воспроизводимых температур. Конденсация влаги из воздуха приводит к снижению содержания этанола. Для продления срока службы теплоносителя необходимо:
 - использовать крышку 4 (рисунок 1), ограничивающую доступ воздуха к поверхности теплоносителя, при выходе на установленную температуру и в промежутках между операциями поверки;
 - не реже одного раза в месяц контролировать содержание этанола в этиловом спирте. При содержании этанола менее 90 % необходимо полностью заменить теплоноситель.
- Использование не рекомендованных производителем теплоносителей может привести к неисправности прибора.

11

¹ Периодичность определяется опытным путем и зависит от рабочей температуры теплоносителя, относительной влажности окружающего воздуха и частоты использования термостата.

2.4 Замена теплоносителя

- 2.4.1 Выключить термостат и вынуть вилку сетевого кабеля из электрической розетки.
- 2.4.2 Надеть сливной шланг из комплекта поставки на сливной кран 8 (рисунок 5) и закрепить его хомутом. Свободный конец шланга опустить в емкость для сбора теплоносителя объемом, превышающим объем термостата.
- 2.4.3 Открутить винты, фиксирующие положение блока регулирования на крышке термостата, приподнять блок и вынуть входную и выходную трубки из муфт на дне основной ванны термостата (см. 2.2.4).
- 2.4.4 Соблюдая меры предосторожности открыть сливной кран и дождаться полного слива теплоносителя.
- ! Категорически запрещается сливать теплоноситель, нагретый до температуры выше 90 °C. Это может привести к поломке сливного крана.
- 2.4.5 Извлечь блок регулирования температуры и рабочую ванну из ванны термостата. Очистить блок, основную, рабочую и дополнительную ванны от остатков теплоносителя.
- 2.4.6 Установить рабочую ванну в дополнительную, блок регулирования установить в соответствии с 2.2.4.
 - 2.4.7 Заполнить термостат свежим теплоносителем в соответствии с 2.2.6.
 - 2.4.8 **Включить термостат в соответствии с** 2.2.7**–**2.2.9.
- 2.4.9 В настройках блока регулирования установить тип используемого теплоносителя в соответствии с документом ТКЛШ 3.222.009-22 РЭ «Блок регулирования температуры погружной циркуляционный М10М серии МАСТЕР». Это необходимо для использования щадящего режима нагрева теплоносителя в целях продления срока его службы.

З ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 3.1.1 Для исправного функционирования холодильной машины термостатов следует не реже одного раза в месяц удалять пыль из воздушного теплообменника. Для этого:
 - при помощи пылесоса тщательно очистить от пыли черную оребренную поверхность воздушного теплообменника 5 (рисунок 1);
 - если есть такая возможность, продуть теплообменник при помощи сжатого воздуха.
- 3.1.2 Возможные неисправности и способы их устранения приведены в таблице 3, во всех остальных случаях выхода термостатов из строя следует обращаться на предприятие-изготовитель.

Таблица 3

Неисправность	Признак неисправности	Вероятная причина	Способ устранения
Блок регулирова- ния не переключа- ется в рабочий ре- жим	Не светится дисплей блока регулирования, не работает насос	Сработал автоматиче- ский предохранитель, неисправность вилки сетевого кабеля	Включить сработав- ший предохранитель, заменить вилку сете- вого кабеля
Нет связи между блоком управления и холодильной ма-	Не работает холодиль- ная машина	Обрыв в соединительном кабеле либо окисление контактов разъемов	Проверить кабель, промыть спиртом разъемные соединения
Перегревание дви- гателя насоса	Регулярно срабатывает защита от перегревания двигателя насоса	Использование вязкого теплоносителя	Заменить теплоноси-

4 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1 Транспортирование

- 4.1.1 Транспортирование термостатов в упакованном виде производят всеми видами транспорта в закрытых транспортных средствах в условиях хранения, соответствующих 3 ГОСТ 15150.
- 4.1.2 После транспортирования при отрицательных температурах термостаты должны быть выдержаны без упаковки в рабочих условиях в течение 6 часов.

4.2 Хранение

- 4.2.1 Термостаты до введения в эксплуатацию следует хранить на складах в упаковке предприятия-изготовителя в условиях хранения, соответствующих 1 ГОСТ 15150.
- 4.2.2 Хранение термостатов без упаковки возможно при температуре окружающего воздуха от 10 °C до 40 °C и относительной влажности до 80 % при температуре 25 °C. Содержание пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию, не должно превышать содержания коррозийно-активных агентов для атмосферы типа I в соответствии с Γ OCT 15150.

5 ПОВЕРКА ТЕРМОСТАТОВ

5.1.1 Поверка термостатов осуществляется в соответствии с документом ТКЛШ 0.515.003 МП «Термостаты жидкостные ТЕРМОТЕСТ. Методика поверки с изменением №1», утвержденным ФГУП «ВНИИМС».

6 ПРОЧИЕ СВЕДЕНИЯ

6.1 Форма записи при зак	казе
---------------------------------	------

6.1.1 В к а	ачестве опций	термостаты мог	ут быть	укомплектованы	интерфейсом	RS- 232	или
RS-485.							

6.1.2 Запись при заказе	:		
Термостат жидкостный <наим ТУ 4211-054-44229117-2008.	енование термостата>-<интерфейс>,		
<наименование термостата>	TEPMOCTECT-100, TEPMOTECT-100-40		
<интерфейс> —	232 — наличие интерфейса RS -232		
	485 — наличие интерфейса RS -485		
Примеры записи при за	казе:		
ТЕРМОТЕСТ -100-232 — термос	тат TEPMOTECT -100 с интерфейсом RS-232;		
ТЕРМОТЕСТ -100-40-485 — тер	мостат ТЕРМОТЕСТ-100- 40 с интерфейсом RS-485.		
6.2 Сведения о при	емке и поверке		
	остный ТЕРМОТЕСТ-100 заводской № пытания на соответствие ТУ 4211-054-44229117-2008, первичную нию.		
м.п.	Дата выпуска		
	OKK		
клеймо	Поверка выполнена		
	Поверитель		
•	об упаковке остный ТЕРМОТЕСТ-100 заводской № бованиями ТУ 4211-054-44229117-2008.		
	Дата упаковки		
М.П.			
	Упаковку произвел		

6.4 Гарантийные обязательства

6.4.1 Гарантийный срок, в течение которого предприятие-изготовитель обязуется устранять выявленные неисправности, составляет 24 месяца с момента ввода термостата в эксплуатацию, но не более 25 месяцев с момента отгрузки потребителю. Гарантийные права потребителя признаются в течение указанного срока, если он выполняет все требования по транспортировке, хранению и эксплуатации термостата.

6.5 Сведения о рекламациях

- 6.5.1 При возврате термостата предприятию-изготовителю для технического обслуживания или ремонта необходимо заполнить форму запроса на техническое обслуживание, приведенную в Приложении Б. При неисправности термостата в период гарантийного срока потребителем должен быть составлен акт рекламации с указанием выявленных неисправностей.
- ! Термостат, возвращаемый предприятию-изготовителю для технического обслуживания или ремонта, должен быть чистым. Если обнаружится, что термостат загрязнен, то он будет возвращен потребителю за его счет. Загрязненный термостат не будет ремонтироваться, заменяться или попадать под гарантию до тех пор, пока он не будет очищен потребителем.
- 6.5.2 Заполненная форма запроса на техническое обслуживание и, при необходимости, акт рекламации вместе с термостатом высылается в адрес предприятия-изготовителя:

ООО «Термэкс»

634507, г. Томск, п. Предтеченск, ул. Мелиоративная, д. 10A, стр. 1 8 (800) 250-26-65

ПРИЛОЖЕНИЕ А. ПЕРЕЧЕНЬ ССЫЛОЧНЫХ НОРМАТИВНЫХ ДОКУМЕНТОВ

Обозначение	Наименование
FOCT 15150-69	Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды
FOCT 17299-78	Спирт этиловый технический. Технические условия
ГОСТ 13032-77	Жидкости полиметилсилоксановые. Технические условия
FOCT 28084-89	Жидкости охлаждающие низкозамерзающие. Общие технические условия
FOCT 32144-2013	Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения
FOCT 12.2.007.0-75	ССБТ. Изделия электротехнические. Общие требования безопасности
TP TC 004/2011	Технический регламент таможенного союза. О безопасности низковольтного оборудования
TP TC 020/2011	Технический регламент таможенного союза. Электромагнитная совместимость техниче- ских средств
ГОСТ 14192-96	Маркировка грузов
TY 4211-054-44229117-2008	Термостаты жидкостные ТЕРМОТЕСТ. Технические условия